Measurement of Developing Turbulent Flows in a 90 -Degree Square Bend with Spanwise Rotation

Young Don Choi*
Professor, Department of Mechanical Engineering, Korea University, Sungpukku, Seoul 136-701, Korea
Dong Chul Kim
Graduate School, Department of Mechanical Engineering, Korea University, Sungpukku, Seoul 136-701, Korea
Kun Hee Lee
Associate Professor, Department of Mechanical Engineering, Wonkwang University, Iksan, Chunbuk 570-749, Korea

Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with span-wise cotation are measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and the Reynolds stress components. Combined effects of the centrifugal and Coriolis forces due to the curvature and the rotation of the bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

Key Words: Rotating Curved Duct, Hot-wire measurement, Reynolds Stress, Coriolis Force, Turbulent Flow

Nomenclature

C_{P} : Pressure coefficient
$\overline{\mathrm{C}_{\mathrm{P}}}$: Mean pressure coefficient
D_{H} : Hydraulic diameter of duct
$\mathrm{D}_{n}:$ Dean number $=\operatorname{Re}\left(D_{H} / R_{C}\right)^{1 / 2}$
E : Instantaneous voltage of hot-wire
$e \quad$: Fluctuating voltage of hot-wire
$e_{r}:$ Radial direction unit vector
$\boldsymbol{F}_{\boldsymbol{c}}$: Coriolis force vector
F_{r} : Resultant foree
\boldsymbol{F}_{τ} : Resultant force vector
F_{R} : Centrifugal force vector associated with the rotation of bend

[^0]$F_{c} \quad$: Centrifugal force associated with bend rotation
$k_{\theta_{i}}$: Coefficient of hot-wire orientatation
$K_{E_{i} E_{5}}:$ Covariance between wires i and j
K_{S} : Coefficient of hot-wire characteristics
P : Pressure
$R:$ Radius vector from the axis of rotation
$R \quad:$ Radius from the axis of rotation
R_{c} : Radius of duct curvature
$\mathrm{R}_{c} \quad:$ Rotation number $\left(=\Omega \gamma_{m} / W_{B}\right)$
Re : Reynolds number $\left(=W_{B} D_{H} / v\right)$
$\mathrm{R}_{\mathrm{o}} \quad$: Rossy number $\left(=Q D_{H} / W_{B}\right)$
$r_{m} \quad$: Mean radius of duct curvature
$U \quad$: Normal mean velocity component
$U_{e} \quad$: Effective velocity
$\overline{u_{i} u_{j}}:$ Reynolds stress tensor
$V \quad:$ Radial mean velocity component
$v \quad$: Radial fluctuating velocity
V_{λ} : Resultant velocity vector
$W \quad$: Stream-wise velocity component
W_{B} : Stream-wise bulk velocity

$\frac{w}{X_{\theta}}$	$:$ Stream-wise fluctuating velocity
X	$:$ Normal coordinate
\bar{X}_{θ}	$:$ Effective velocity
Y	$:$ Radial coordinate
Z	$:$ Stream-wise coordinate
$\gamma_{E, E_{j}}$: Correlation coefficient between cooling
	velocities of adjacent wire orientations
θ	$:$ Rotation angle of hot-wire, bend angle
	from entrance
κ	$:$ Experimental constant
ν	$:$ Kinetic viscosity
ξ	$:$ Angle between V_{λ} and a wire
ρ	$:$ Density
σ^{2}	$:$ Variance of a given quantity
Ω	$:$ Angular velocity
φ	$:$ Angle between Coriolis and centrifugal
	forces associated with bend rotation

Subscripts

$l, m:$ Dummy indices which take the valves 1 to 3
$1,2,3,4,5,6:$ Refers to the six probe measuring
positions
$\theta \quad:$ Rotation angle of hot ${ }^{-}$wire, bend angle

1. Introduction

Information on the turbulent flows in rotating, curved ducts are of great importance, for instance, in the design of rotating devices such as turbines, pumps and compressors. In such flows, the Coriolis and centrifugal forces arising from the imposed system rotation and bend curvature may act both on the mean motion and turbulence structures. Consequently, the reacting forces on the mean motion may encounter rapid changes in direction and magnitude with the progress of flow along the bend. If the two body forces are confluent, the resultant force may enhance the generation of secondary flows whereas if the forces counteract, they may decrease the secondary flows. It is highly desirable to decouple the contributions of the body forces on the mean motion and turbulence structures. However it is not easy to isolate their individual contribution in the rotating bend flows in practice.

There have been extensive studies on the effects of Coriolis and centrifugal forces in rotating plane channel flows. They include the large eddy simulations by Kim (1983), and Tafti and Vanka (1991), experimental study by Koyama and Ohuchi (1985), the direct numerical simulation by Kristofferson and Anderson (1990), and the application of second-moment closure by Launder et al. (1987), and Launder and Tselepidakis (1994).

The curvature and system rotation of a bend can destabilize or stabilize the flow in some regions. The mechanism for this destabilizing and stabilizing phenomena have been examined extensively in plane channel flows rotating in orthogonal mode, by Johnston (1972), Launder et al. (1989), Launder and Tselepidakis (1994), Kristoffersen and Anderson (1993), Anderson and Kristofferson (1995), and Patterson and Anderson (1997). A comprehensive review of the literature on heat transfer in rotating plane channels was provided by Morris (1981), Kajishima et al. (1991), and Murata and Mochizuky (1999). Kajishima et al.(1991), Murata and Mochizuki (1999) performed large eddy simulations to examine the effects of the Coriolis force on turbulent heat transfer characteristics in the curved channel flows rotating in orthogonal mode. Second moment closures were employed by Bo et al. (1995) and Younis (1993) to predict the turbulent heat transfer in orthogonally rotating square duct flows.

Development of turbulence models applicable to rotating curved duct flows has been difficult due to the lack of experimental data for mean velocity and Reynolds stress distributions. The turbulent flow in a rotating 90° bend with a square cross-section has several qualities that make it well suited for a benchmark test flow to develop the second moment closures. The effects of Coriolis and centrifugal forces on the mean motion and turbulence structures can easily be decoupled, due to the simple shape of the flow passage.

The flow configuration of this study is the $90-$ degree rotating bend of a square cross-section followed by a straight duct section. The objective
of the present study is to make delailed measurements, using a hot-wire anemometry technique, of the developing turbulent flow in the 90 -degree rotating square bend and upstream tangent in order to investigate the combinative effects of rotation and curvature of bend on the mean motion and turbulence structures.

Pigure $]$ shows a schematic diagram of the rotating 90 -degree bend and defines the coordinate system and symbols used. The radius of the curvature to hydraulic diameter ratio ($R c / D_{H}$) of the bend is 3.375 , and the bend angle is 90 degrees. X and Y map the cross-sectional plane, while progress around the bend is expressed through angle 0 . In this rotating bend flow, 3 kinds of body forces, acting on a fluid particle, affect both on the mean motion and turbulence structures. They are:

The centrifugal force associated with the curvature of bead

$$
\begin{equation*}
F_{c, c}=\rho-\frac{W^{2}}{r} \tag{1}
\end{equation*}
$$

The centrifugal force associated with the rotation ol bend

$$
\begin{equation*}
\boldsymbol{F}_{F}=-\rho R \times \Omega \times \Omega \tag{2}
\end{equation*}
$$

The Coriolis foree associated with the rotation of bend

$$
F_{\mathrm{c}}=-2 \rho \Omega \times V
$$

Normalizing by $\rho W_{B}^{2} / r_{m}$ the radial components of the resultant force of the three forces along the centerline of the bend yields

Fig. 1 Schematic diagram showing the bead and tangents, the two coordinate systems and the three velocity components

$$
\begin{align*}
\frac{F \cdot e_{r}}{\rho W_{B}^{2} / \gamma_{m}} & =\quad F_{r} \\
& \rho W_{B}^{2} / \gamma_{m} \tag{3}\\
= & 1+2 \mathrm{R}_{\mathrm{C}}+{ }^{R \cos \varphi} \gamma_{m}^{2}
\end{align*}
$$

where Re_{c} is the rotation number defined as $\frac{\Omega \gamma_{m}}{W_{B}}$
Equation (3) shows that the rotation number R_{C} is the primary parameter that determines the characteristics of rotating flow in a curved duct.

In the rotating plane channel flows, the Rossby number ($\mathrm{R}_{0}=\Omega D_{H} / W_{B}$) has been uscd as a primary parameter that describes the rotating flow characteristics (Johnston et al. (1970)) . In a rotating bend flow of a square cross-section, however, it should be replaced by rotation number $\mathrm{R}_{\mathrm{C}}=$ $\Omega \gamma_{m} / W_{B}\left(=R_{o} \gamma_{m} / D_{H}\right)$, the ratio of the Coriolis to the centrifugal forces along the centertine of the bend, where γ_{m} is the mean curvature radius of the benc.

Two kinds of flow modes are studied experimentally in this study. One is the outward flow mode in which the how is blown out from the center hole toward outward direction. In this flow mode, the Coriotis and centrifugal forces combine in a destructive way to decrease the secondary flow intensity. On the other hand, in the inward flow mode, in which the flow is suctioned through the test section toward center hole that is located at the rotating hollow shalt, the Coriolis force is combined with the centrifugal force to promote the secondary flow. The data obtained by the present experiment will be used in many ways for developing and testing comprehensive threc dimensional turbulence models.

2. Experiment

2.1 Experimental apparatus

The basic components of the experimental apparatus are shown schematically in Figs. 2 and 3. It is comprised of a test section, a 90 -degree bend with a 50 mm square cross-section, a rotating dise of 1.92 m diamcter, an $\mathrm{Ag}-\mathrm{Ni}$ precision slip ring constructed to transmit the signal from the rotating lest section to the stationary anemometer, an electric power supply for the automatic traversing mechanism, a variable speed motor, a speed re-
duction gear mechanism, centrifugal blower, an orifice flowmeter, and a hot-wire anemomerer system. The lengths of the inlet and outlet tan gents of the bend are 1 and 2.223 hydraulie diameters, respectively. The section is constructed From an 8 mom thickness acryl shect providing rigid, transparent walls. Honeycomb and wire mesth screens are installed upstream of the test section to eliminate the secondary motion and the furbulence involved in the intake flow. Down.

Fig. 2 Schomatic diagram of experimental apparatus

Fig. 3 Plan view of rotating dise
stream of the wire mesh, a iurbulence generator. which consists of a 4 mm diameter tube bank with a 10 mm piteh, is installed to generate uniform inlet turbulence. The speed of the totating dise is controlled by a variable speed motor and a bevel gear speed reduction mechanism. The hot wire probe is traversed by an atomatic mechanism, which is installed on the rotating disc. Transtation tolerance of the automatic traversing mechanism is $1 / 200 \mathrm{~mm}$ and the rotation tolerance js $1 / 2$ degrec. Air flow through the test section is provided by a centrilugal blower, and the llow rate is measured by a $D-\frac{1}{2} D$ orifice llowmeter. Intake air temperature of the test section rises slowly due to the heat generation of the blower and reaches a steady state at about I hour ol operation.

As shown in Fig. 1, static pressure holes are installed on the inner and outer walls along the symmetric plane of the bend at every tive degree increment. The pressure holes are connected to a pressure transducer by a polyvinyl tube to the pressure scanning box. Velocity holes are installed at 7 stations: $0.5 D_{H},-0 . D_{H}, 0^{\circ}, 22.5^{\circ}$, $45^{\circ}, 67.5^{\circ}$ and 90° on the outside wall. A1 each station, 4 velociiy holes are located at the positions where $\begin{gathered}2 X \\ D\end{gathered}=0.25,0.5 .0 .75,1.0$.

The 3 -dimensional velocity and 6 Reynolds stress components were calculated by the correlations which combine the mean and lluctuating voltages measured by S and 1 bpes hot-wire probes.

2.2 Measurement of mean velocity components

Rotating the S-type hot-wire θ degree from the relerence position, which is inclined 45° from the $Y-Z$ plane as shown in Fig. 4, the coordinate of point A would be $\left(-\frac{1}{2} \cos 45^{\circ} \sin \theta \cdot-\frac{1}{2} \cos \right.$ $45^{\circ},-\frac{1}{2} \cos 45^{\circ} \cos \theta$).

Denoting the resultant velocity vector by

$$
\begin{equation*}
V_{A}=U \mathbf{i}+V \mathbf{j}-W \mathbf{k} \tag{4}
\end{equation*}
$$

the angle ξ between resultant velocity vector V_{k} and position vector A can be obtained by the dot product of the two vectors as follows:

Fig. 4 Schematic diagram showing a S type wire probe rotated 0 degree from reference position

$$
\begin{equation*}
\xi=\cos ^{-1}\left(\frac{\left.W \cos \theta-V-\frac{U \sin \theta}{/ 2}\right)}{V_{i}}\right) \tag{5}
\end{equation*}
$$

where V_{λ} is the magniude of the resuitant velocity. If a lincarized hot wire anemometer system is used, then the measured instantancous voltage is related to the effective velocity $\left(U_{e}\right)$:

$$
\begin{equation*}
E_{b}=K_{S} U_{e v} \tag{6}
\end{equation*}
$$

where K_{s} is a proportionality constant and the subseript O denotes the rotated angle of the probe From the refcrence position. Champagne (1967) suggested a relation between effective and resultant velocifies,

$$
\begin{equation*}
U_{e 0}=V_{A}\left(\sin ^{2} \xi+\kappa^{2} \cos ^{2} \xi\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

where k is an empirical constant. In the present study, $k-0.2$ was adopled. Substituting equations (5) and (7) into (6), one may artive at

$$
\begin{aligned}
E_{y}= & \frac{K_{s}}{\sqrt{2}}\left[U^{2}\left(2-\sin ^{2} \theta+\kappa^{2} \sin ^{2} \theta\right)+\left(1+\kappa^{2}\right) V^{2}\right. \\
& +W^{2}\left(2-\cos ^{2} \theta+\kappa^{2} \cos ^{2} \theta\right)+2 V W\left(1-\kappa^{2}\right) \\
& \left.+2 U W \cos \theta \sin \theta\left(1-k^{2}\right)-2 U V \sin \theta\left(1-\kappa^{2}\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

Replacing the instantancous values of E_{0}, U, V, and W in Eq. (8) by their mean and floctuating components, and expanding them in a Taylor series (neglecting terms of order higher than (ifth, , the following fourth order equation for the mean effective velocity $\overline{X_{\theta}}$ is obtained (Choi et al. (1990)) :

$$
\begin{equation*}
3{\overline{X_{\theta}}}^{4}-8 \overline{E_{\theta}}{\overline{X_{\theta}}}^{3}+6\left({\overline{E_{\theta}}}^{2}+{\overline{e_{\theta}}}^{2}\right) \bar{X}_{\theta}^{3}-\delta_{\theta}=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{gather*}
\overline{X_{\theta}^{\prime}}=\frac{K_{\theta} \overline{X_{\theta}}}{\sqrt{2}} \tag{10}\\
\delta_{\theta}=\overline{F_{\theta}^{i}}+6 e_{\theta}^{2}{\overline{E_{\theta}}}^{2}+4 \overline{e_{\theta}^{3}} \overline{E_{\theta}}+e_{\theta}^{4} \tag{11}
\end{gather*}
$$

where

$$
\begin{gathered}
\bar{X}_{\theta}=\left(k_{\theta 1} \bar{U}^{2}+k_{\theta 2} \bar{V}^{2}+k_{\theta 3} \bar{W}^{2}+k_{\theta 4} \bar{V} \bar{W}\right. \\
\left.+k_{\theta 4} \bar{U} \bar{W}+k_{\theta 1} \bar{U} \frac{\bar{V}}{}\right)^{1 / 2} \\
k_{\theta 2}=2-\sin ^{2} \theta+k^{2} \sin ^{2} \theta \\
k_{\theta 2}=1+\kappa^{2} \\
k_{\theta 3}=2-\cos ^{2} \theta+k^{2} \cos ^{2} \theta \\
k_{\theta 4}=2\left(1-k^{2}\right) \\
k_{\theta 5}=2 \cos \sin \theta\left(1-\kappa^{2}\right) \\
k_{\theta 6}=2 \sin \theta\left(1-k^{2}\right)
\end{gathered}
$$

If $\overline{E_{\theta}}, \overline{e_{\theta}^{2}}, \overline{e_{\theta}^{\overline{8}},} \overline{e_{\theta}^{4}}$ are measured for each probe angle, X_{Q} can be calculated from Eq. (9) by rotating the S-type probe into $\theta=60^{\circ}, 90^{\circ}, 120^{\circ}$ and 270°, and followed by the I-type probe into $60^{\circ}, 120^{\circ} . \overline{E_{\theta}}, \overline{e_{\theta}^{2}}, \overline{e_{\theta}^{2}}, \overline{e_{\theta}^{2}}$ were measured for each angle. If the positive roots of equation (9) for the corresponding probe angles are denoted by $X_{1}^{\prime \prime}, X_{2}^{\prime \prime}, X_{3}^{\prime \prime}, X_{4}^{\prime \prime}, X_{5}^{\prime \prime}$, and $X_{6}^{\prime \prime}$, many sets of simultaneous equations for \bar{U}, \bar{V}, and $\bar{W} \bar{W}$ can be obtained from equation (8). Among the sets of equations, we can choose the optimal relation that can give minimum uncertainty of the mean velocity calculation duc to its dagonal dominance of the solution matrix. The resulting relations are written as

$$
\begin{align*}
U= & {\left[\left(\overline{X_{\mathrm{s}}^{\prime \prime}}\right)^{2}-\left(\overline{X_{6}^{\prime \prime}}\right)^{2}\right] /\left[\sqrt{3} K_{3}^{2}\left(1-\kappa^{2}\right) W\right] } \tag{12}\\
\bar{V}= & {\left[2\left(\overline{X_{1}^{\prime \prime}}\right)^{2}-2\left(\overline{X_{2}^{\prime \prime}}\right)^{2}-\left(\overline{X_{5}^{\prime \prime}}\right)^{2}+\left(\overline{X_{6}^{\prime \prime}}\right)^{2}\right] } \tag{13}\\
& \quad\left[2 K_{s}^{2}\left(1-\kappa^{2}\right) \bar{W}\right\rfloor
\end{align*}
$$

$\bar{W}=\left[\left(\bar{X}_{3}^{\prime \prime}\right)^{2}+\left(\overline{X_{4}^{\prime \prime}}\right)^{2}-\left(1+\kappa^{2}\right)\left(\bar{U}^{2}+\bar{V}^{2}\right)\right]^{\frac{1}{2}}(14)$

2.3 Measurement of reynolds stress components

In the present study, the Janjua of al's. (1982) correlation was used to calculate the Rcynolds stress components. The tensor form for the correlation is

$$
\begin{align*}
& \overline{u u_{m}}=\sum_{i=1}^{6} \frac{\partial \overline{U_{i}}}{\partial \overline{E_{i}}} \frac{\partial \overline{U_{m}}}{\partial \overline{E_{i}}} \overline{\sigma_{E_{i}}}+\sum_{i=1 i+i j j=1}^{6} \sum_{i}^{6} \frac{\partial \overline{U_{i}}}{\partial \overline{E_{i}}} \frac{\partial \overline{U_{m}}}{\partial \overline{E_{j}}} \overline{K_{F_{i}} \varepsilon_{j}} \\
& -\left[\frac{1}{2} \sum_{i=1}^{6} \partial^{2} \frac{\partial^{2} U_{i}}{\partial \overline{E_{i}^{2}}} \overline{\sigma_{E_{i}}^{2}}+\sum_{i=1 i<j j j=1}^{6} \sum_{i}^{6} \frac{\partial^{2} \bar{U}}{\partial \overline{E_{i}} \partial \overline{E_{j}}} \overline{K_{E_{i}} E_{i}}\right] \tag{15}
\end{align*}
$$

where $\overline{\sigma^{2}} E_{i}$ represents $\overline{\sigma^{2}}{ }_{\theta}$ for a given probe angle and $K_{E_{i} E_{j}}$, is the covariance between wire i and wire j.
Jackson and Lilley (1983) used the following covariance relation in their experimental work:

$$
\begin{equation*}
K_{E_{i} E_{j}}=\gamma_{E_{i} E_{j}}\left(\overline{\sigma_{E_{i}}^{2}} \overline{\sigma_{E_{j}}^{2}}\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

where $\gamma_{E_{t} E}$, is the correlation coefficient between wires i and j. King (1978) made a certain assumption by calculating the covariance coefficient. He argued that if two wires are separated by an angle of 30 degrees, the contribution of the correlation coefficient would be related by the cosine of the angle between the wires as follows:

$$
\begin{equation*}
\gamma_{E_{i} E_{j}}=\cos 30^{\circ}=0.87 \tag{17}
\end{equation*}
$$

When separation angle θ is a multiple of 30°, he used the following correlation coefficients:

$$
\begin{equation*}
\gamma_{E_{J} E_{3}}=0.8\left(\cos 30^{\circ}\right)^{n} \tag{18}
\end{equation*}
$$

Choi et al.(1990) extended King's relation to angles θ, that are not multiples of 30°. Choi's correlation coefficient for separation angle $\theta=$ $30 n+\alpha$ is written as

$$
\begin{equation*}
\gamma_{E_{J} E_{J}}=0.8\left(\cos 30^{\circ}\right)^{n} \cos \alpha \tag{19}
\end{equation*}
$$

If mean voltage $\overline{E_{\theta}}$, square mean fluctuating voltage component $\overline{e_{\theta}^{2}}$, and cubic mean of fluctuating voltage component $\overline{e_{\theta}^{2}}$ are measured for each probe angle, the Reynolds stress correlation Eq. (15) can be calculated by using correlation (19).

2.4 Scope of experimental program and data uncertainty

Various combinations of the present experimental program are tabulated in Table 1.
Uncertainty analysis was performed based on the method suggested by ASME Performance Test Codes (1987). It is assumed that the equipment has been constructed correctly and calibrated properly to eliminate fixed errors. Thus,

Table 1 Various combinations of experimental parameters

Reynolds Number	Rotating speed (pmm)	Rossby number	Rotation number
20,000	0	0.0	0.0
60,000	60	0.0427	0.187
40,000	45	0.0481	0.210
40,000	60	0.0641	0.280
30,000	60	0.0854	0.374
20,000	60	0.1282	0.561
20,000	-60	0.1282	-0.561
20,000	-75	-0.1603	-0.701

the uncertainties of the measured quantities in the present experiments are assumed to be random with normal distribution. The uncertainty of the Reynolds number and digital manometer is estimated as 0.94% and 0.2%, and the uncertainties of hot-wire for mean and fluctuating velocities are estimated as 4.4% and 2.9%, respectively. Therefore, the combined uncertainties of pressure coefficients, and mean and fluctuating velocities are estimated as $0.96 \%, 4.5 \%$ and 3.0%, respectively.

3. Results and Discussion

Distributions of pressure coefficients along the inner and outer walls are compared in Fig. 5 for various rotation numbers. The pressure coefficient is defined as

$$
\begin{equation*}
C_{p}=\frac{P-P_{r}}{-\frac{1}{2}-\rho W_{s}^{2}} \tag{20}
\end{equation*}
$$

where W_{s} is the bulk velocity, P is the local mean static pressure and P_{r} is the reference pressure measured on the outer wall at the bend inlet. As the flow enters the bend, the pressure coefficient along the outer wall rises quickly while that of inner wall drops almost as quickly. Beyond the entrance region, both pressure coefficients again decrease slowly. However, as the rotation number of the bend increases, differences between the pressure coefficients of the inner and outer walls also increase. For the inward flow mode, Coriolis forces are added to the centrifugal forces asso-
ciated with the bend curvature in a productive way in the outward radial direction so that it may increase the difference of the pressure coefficients between the inner and outer walls.

In the stationary bend flow, the pressure coefficient along the inner wall drops slowly in the entrance region, but beyond that region remains nearly constant up to the bend cxit. As the rotation number increases, however, it decreases more quickly and shows wavy variations as shown in Fig. 5. These wavy variations of pressure coefficionts in the rotaling bend flows are presumably caused by the rapid change of scondary flow pattern as with the increase of the rotation number of the bend flow.

Comparison of the measured mean pressure coefficients for the various Reynolds numbers and rotation numbers are shown in Fig. 6. Mean pressure coefficient of the square sectioned bend can be defined as

Fig. 5 Comparison of measured pressurc coefficients along the inner and outer the walls in the inward llow mode for $\mathrm{Re}=40,000$

$$
C_{p}=\begin{gather*}
\left(\bar{P}_{\text {inte }}+\bar{P}_{\text {outiet }}\right) / 2-P_{r} \tag{21}\\
\frac{1}{2} \rho W_{B}^{2}
\end{gather*}
$$

lri the stationary duct flow, mean pressure coefficients show significant Reynolds number dependency, However as with the increase of rotation number, the dependency of the Reynolds number disappears while the dependency on the rotation number remains.

It is of interest in Fig. 7 to compare the measured pressure coefficients for the outward flow mode in which the rotation number has negative value. In the outward flow mode, the radial component of the Coriolis force is added to the centrifugal force associated with the bend curvature in a destructive way, thus resulting in a decrease in pressure coefficiont differences between the inner and outer walls. Furthermore, in the cntrance region of the bend, the Cortolis force exceeds the contrifugal force, making the pressure cocfficients of the inner wall greater than those of the outer wall. But as the flow progresses around the bend in the outward direction, the trend is reversed. At $\mathrm{Rc}=-0.561$, the reverse of pressure coefficients occurs in the vicinity of

$\mathrm{O}: \mathrm{Re}=20,000 \triangle: \mathrm{Re}=30,000$
$\square: ~ R e=40,000$: $R e=60,000$
Fig. 6 Variation of mean pressure coefficients with respect to Re
$0=30^{\circ}$ while at $\mathrm{Rc}=-0.701$ the reversal point moves to $\theta=55^{\circ}$. Increase in the Coriolis force in a negative direction as with the decrease of the rotation number may reduce the pressure coeffecients ol the outer wall so as to move the reversal point in a downward dircetion.

Figure 8 shows the comparison of the longitudimai varation of measured mean stram-wise and radial velocity profiles of the rotating and stationary bend flows for the inward flow mode. The open symbol indicates the normalized mean velocity components of the stationary bend flow while the solid symbol indicates those of the rotating bend. As the flow progresses along the bend, the location of the maximum mean stream-wise velocity shifts toward the outcr wall both in the stationary and the rotating bend flows. In this type of inward flow mode, the rotation of the bend combines the Cortolis and centrifugal Forces in a productive wily in a radial outward direc-

Fig. 7 Comparison of measured pressure cocfficients in the outward flow mode for $\mathrm{Re}=20,000$, and (a) $R c=-0.561$, (b) $R c=-0.701$
tion, increasing the secondary fow intensity, and thereby promoting the shift of the location of the maximum mean srean-wise velocity towad the outer wall in the entrance region of the bend. However, in the rotating flow, the shilting of the location of the maximum velocity stops atfer the progress of the 45° flow into the bend. Generally. it is known that a pair of large counter-rotating Fekman vortices appear and grow in the entrance region of the bend and increase up to $O=90^{\circ}$, but after they reach $\theta=90^{\circ}$, the Eckman vortex pair breaks down imo a multi-cell pattern and Dean vortices appear in the outer wall region. Choi et al.(1997) analyzed mumericatly the developing turbulent flow in the coiled bend ol a square cross-scetion by employing a second moment turbulence closure. In the computation. they captured the occurence of three pairs of Dean vortices in the outer wall region at around $\theta=$ 180° station of the bend. However in the rotating bend flow, the Coriolis and centrifugal forces associated with the bend rotation may affeet the meatr moiton and turbutence structures in a complex mamer so that they may include the carlier appearance of Dean vortex pair.

Figure 9 shows the development of nomatized mean stream-wise and radial velocity profiles

Fig. 8 Longitudinal variation of measured nomalized mean stream-wise velocity (W / W_{B}) and radial velocity (V / W_{s}) along the center symmetry plane for the in watd flow mode for higher Dean and lower rotation numbers
along the symmetry plane for higher rotation number and lower Dean number compared to those shown in Fig. 8. The effect of the decrease in Dean number may exceed the effect of the increase in rotation number, suppressing the mean radia! velocity in the bend. Fowever in the upstream tangent, where there is no curvature effece, the increase in rotation number induce the large increase in secondary flow intensity.
In Fig. 10, the variations of measured streamwise mean velocity profiles of the rotating bend llows for relatively higher Dean and rotation numbers are compared with those of stationary bend flow. In the relatively higher Dean and rotation number flow, as the flow enters the bend from the straight inlet tangent, it is subjected 10 an abrupt lavorable pressure gradient along the inner wall while an adverse pressure gradient along the outer wall. This difference of pressure gradient between the inner and outer wall in the entrance region of the bend may accelerate the flow along the inner wall and decelerate the flow along the outer wall. However, as the flow progresses along the bend, the secondary flow induced by the imbalance of the body forces and pressure gradients may shift the location of the

Fig. 9 longitudinal variation of measured normalized mean stream wise velocity $\left(W / W_{B}\right)$ and radial velocity $\left(V / W_{B}\right)$ along the symmelty plane in the ounward how mode for lower Dean number and higher rotation number
maximum mean stream-wise velocity toward the outer wall both in the stationary and the rotating bend !lows. Up to $0=45^{\circ}$, the rotation of the bend promotes the shift of the location of the maximum mean stream-wise velocity toward the outer wall. However, beyond $\theta=45^{\circ}$, the shifting of the location of the maximum mean stream-wise velocity of the rotating bend flow stops earlicr than that of the stationary bend so that it yields a significant decrease of the mean stream-wise velocity profile in the outer wall region. Lee (1992), in the calculation of a rotating 90 -degree square sectioned bend flow in the same condition as in that of Fig. 10, found that the bend rolation may advance the occurrence of a large Dean vortex pair up to $\theta=45^{\circ}$. A Dean vortex pair appearing in the outer wall region of the rotating bend near the symmetry plane beyond $0=45^{\circ}$ may prevent a further shift of the location of the maximum stream-wise velocity toward the outer wall, yielding an obvious decrease of the mean stream-wise velocity in the outer wall region as shown in Fig. 10.

Fig. 10 Longitudinal variation of measured normalized mean stream-wise velocity profiles ahong the symmetry plane in the inward flow mode for higher Deat and rotation numbers

The decreases in the level of stream-wise and radial rms turbulent velocities and Reynolds shear stress normalized by W_{B} and W_{B}^{2} are found in Fig. II near the suction side in the rotating bend flow. Launder and Tselcpidakis (1994) appiled a sccond moment closure to the rotating plane channel flow and computationally validated the indirect effects of the Coriolis generation in the $v w$ equation on the level of turbulent kinctic energy and mean square turbulent velocities.

Fig. 11 Longitudinal variation of measured rnss turbulent vclocities $\left(\sqrt{u^{2}} / W_{B}, \sqrt{v^{2}} / W_{B} \sqrt{w^{2}} / W_{B}\right)$ and Reynolds shear stress ($\overline{v o} / W_{i}^{2}$) normalized by W_{s} and W_{s}^{2} in the inward flow mode for higher Dean number and lower rotation number

In the cylindrical polar coordinates rotating a angular velocity Ω, gencration terms of the mean square stream-wise and radial turbulent velocities ($\overline{w^{2}}, \overline{v^{2}}$) and Reynolds shear stress $(\overline{v w})$ may be writen as:

$$
P_{\bar{v}}=-2 \overline{w^{v} \cdot} \frac{\partial V}{\partial x}-2 \overline{v^{2}} \frac{\partial V}{\partial y}-2 \overline{\partial w} \frac{\partial V}{\partial z}
$$

Shear Gencration

$$
\begin{equation*}
+\underbrace{W}_{-} \cdot \overline{V W} \quad-4 \overline{u w} \Omega \tag{23}
\end{equation*}
$$

Curvature Gencration Coriolis Generation
$P_{\bar{x} \bar{x}}=-\overline{u x} \frac{\partial V}{\partial x}-\overline{v z} \frac{\partial V}{\partial y}-\overline{w^{\prime}} \frac{\partial V}{\partial z}-\bar{w} \frac{\partial W}{\partial x}-\overrightarrow{v^{2}} \frac{\partial W}{\partial y}-w \overline{t w} \frac{\partial W}{\partial z}$
Shear Generaion
where Ω is positive in the outward flow mode and negative in the inward tlow mode.
The sum of curvature and Coriolis generation terms may be rewritten as follows.
$P_{i \text { wewt curvature comotis; }}$

$$
\begin{equation*}
\therefore-\frac{V}{r}-\bar{w}+\frac{W}{r}-u^{2}+\frac{2 W}{\gamma}\left(w^{\overline{2}}-\bar{v}^{-\overline{2}}\right)\left(1-\frac{\underline{ }}{W}\right) \tag{27}
\end{equation*}
$$

where $\frac{\Omega v}{W}$ is the local rotation number.
We see from the above equations that the magnitude and the sign of $\overline{v w}, \frac{\Omega v}{W}$ and $\left(\overline{w^{2}}-\overline{v^{2}}\right)$ may be the parameters which primarily affect the turbulence structures in the rotating bend flow. If one considers the dymamic equation for the individual moan square turbulent velocities, a term $4 \overline{0} w \Omega$ appears as a source (or sink depending on the sign of $\overline{v w}$) in the $w^{\overline{2}} E($. (22),

$$
\begin{align*}
& P_{\overline{W^{2}} \text { (eurutaure-coriolis) }} \\
& =-2 \frac{V}{r} \overline{w^{2}}-2{ }_{\gamma}^{W} \bar{w}\left(1-2 \frac{Q r}{W}\right) \tag{25}\\
& \Gamma_{\overline{V_{2}}(\text { curvature }+ \text { coriois })}-4-\frac{W}{r} v \bar{w}\left(1-\frac{\Omega r}{W}\right) \tag{26}
\end{align*}
$$

$$
\begin{aligned}
& -2 \cdot r \cdot \frac{V}{u^{2}-2} r-\frac{W}{r}-2 u^{2} \frac{\partial W}{\partial z}+4 v u
\end{aligned}
$$

while a sink (source) of same magnitude appears in the v^{2} Eq. (23). The Coriolis generation term $-2\left(w^{2}-v^{2}\right) \Omega$ ith the $\bar{v} \bar{w}$ equation can act as a sink or a source depending on the signs of $\overline{v w}$ and Ω. In the region of positive $\bar{v} w$, positive value of $-2\left(w^{2}-v^{2}\right) Q$ acts as a soutce, while a sink in the region of negative $\bar{v} \bar{w}$.
In the rotating straight channcl flow, the Coriolis generation $-2\left(\overline{w^{2}}-\overline{v^{2}}\right) \Omega$ in the $\overline{v w}$ equation decreases the positive level of $\overline{v w}$ near the suction surface, as shown in Fig. 11 (d), so that it results in the decrease in the level of turbulent kinetic energy and mean square turbulent velocities in that region while generating opposite effects near the pressure surface. In Fig. 11 (d), through the stations from $z=-3 D_{H}$ to $\theta=22.5^{\circ}$, we can find the decreases of $\overline{v w}$ level as with the rotation of bend. However, the decrease of $\overline{v w}$ level associated with bend rotation disappears as with the flow progress beyond $\theta=45^{\circ}$. In the inlet tangent and the entrance region of the rotating bend of the square crosssection. we can clearly determined the effects of the Coriolis generation term in the $\bar{v} \bar{w}$ equation on the level of turbulent kineric energy. However, beyond $\theta=45^{\circ}$, the effect of Coriolis generation term in $v w$ the equation disappears gradually. The curvature of the bend augnent the mean square radial turbulent velocities over the stream-wise turbulent velocity in some regions, reversing the sign of $-2\left(\overline{u^{2}}-\overline{v^{2}}\right) \Omega$ in the $\overline{v w}$ equation. Therefore we camot find the consistent trend in the variation of $\overline{v w}$ profiles beyond $\theta=-45^{\circ}$ in the rotating bend flow. As the flow progresses around the bend, the reduction of mean square turbulent velocities near the suction surface continues until the bend outlet. However, near the pressure surlace, the level in the mean square turbulent velocities of the rotating bend flow falls below those of the stationary bend. In the inward flow mode, the Coriolis force is combined with the centrifugal force in a productive way in the outward radial direction to increasc the secondary flow intensity. This increase in secondary flow intensity as shown in Figs. 8 (b) and 9(b) may advance the breakdown of a counter rotating secondary flow vortex into a
multi-cellular pattern, preventing the increase of mean square turbulent velocitics near the pressure surface of the stations beyond $\theta=45^{\circ}$.

Comparisons of the measured mean streamwise and radial velocity profiles of the rotating

Fig. 12 Longitudinal variation of measured mean streamwise velociry (W / W_{B}) and mean radial velocity ($V / W_{B} \mathrm{~B}$) normalized by W_{B} along the conter symmetry plane in the outward flow mode for higher Dean number and Jower rotation number

Fig. 13 Longitudinal variation of measured mean stream-wise velocity $\left(W / W_{B}\right)$ and mean radial velocity (V / W_{B}) normalized by W_{B} along the center symmetry planc in the outward flow mode for lower Dean number and higher rotation number
and the stalionary bend flows for the outward flow mode are shown in Figs. I2 and 13. In the outward flow mode, rotation of the bend damps the scondary flows in the entrance region of curved duct and makes the mean stream-wise velocity profiles be flatter compared to the stationary bend flow due to the destructive combination of centrifugal and Coriolis fores. Comparing Figs. 12 and 13 , we find that, with the clecrease of rotation number in negative direction, W / W_{s} profite becomes flater at the station

Fig. 14 Longitudinal variation of measured rms turbulent velocitics $\left(\sqrt{z u^{2}} / W_{B}, \quad \sqrt{v^{2}} / W_{B}\right.$. $\sqrt{W^{2}} / W_{n}$) and Reynolds shear stress ($\bar{u} w^{\prime} /$ W_{B}^{2}) normalized by W_{B} and W_{B}^{2} in the out ward flow mode for lower Dean and rotation numbers
beyond $0=45^{\circ}$ while decreasing secondaty flow intensity in the entrance region.

Longitudinal variations of $\sqrt{u^{2}} / W_{B}, \sqrt{w^{2}} / W_{B}$ and $\sqrt{w^{2}} / W_{B}$ for the outward flow mode contained in Fig. 14 show the opposite rends of the variations of inward flow mode shown in Fig. II. In the entrance region of bend, the radial and the stream-wise m turbulent velocitics normalized by W_{B} decrease in the inner wall side while increase in the outer wall side. But the opposite trend, which is more obviously found in the radial rms turbulent velocity profiles, oceurs as with the flow progress beyond $\beta=45^{\circ}$. Oppor site signs of the curvature and Coriolis generan tion terms, $v W W / r$ and $4 \Omega v w$, in the v^{2} and $w i^{2}$ cquations may cause these differences in the variations of $\overline{v^{2}}$ and $\overline{w^{2}}$ profiles near the suction surface. In the entrance region, the levels of $\sqrt{v^{2}} / W_{B}$ near the wall side are larger than those of the core region. But beyond $\theta=45^{\circ}$ the level of $\sqrt{v^{2}} / W_{B}$ of the core region becomes larger than those of near wall sides. This is due to the change of sign in the Coriolis generation term
$2\left(w^{2}-\bar{v}^{2}\right) \&$ in the bu equation as v^{2} increases over the $\overline{w^{2}}$ as shown in fig. 14. The reversal of the sign of Coriolis generation icm $-2\left(w^{\overline{2}}-\overline{v^{2}}\right) \Omega$ in the $w \bar{w}$ equation may induce the obvious decrease in the level of $\overline{w w} / W_{B}$, at the station $0=22.5^{\circ}$ in Fig. i4(d).

4. Conclasions

Hon-wire measuremen of the mean and tarbulent velocities in rotaing 90-degree bend flows of a square cross section are reported and the effects of Coriolis and centrifugal forces on the mean motion and the turbulent structures are explored. From the investigation of longitudinal variations of the mean stream-wise and the radial velocities, the Reynolds stresses, and the pressure cocfficients, the following conclusions are drawn.
(1) The productive merging of the Coriolis force and the centrifugal force due to the bend curvature in the ontward radial direction inerease the secondary flow intensity in the enrance re-
gion of the bend. However, beyond 45 degree position of the bend, the centrifugal force due to bend rotation may promote the break down of the counter rotating vortex pair into multi-cellular pattern, thereby decreasing the generation rate of turbulent kinetic energy.
(2) The Coriolis generation term in the $\overline{v w}$ equation may decrease both the Reynolds stresses and turbulent the kinetic energy neat the suction surface while keeping intact those of the near pressure surface due to the advanced break down of counter-rotating vortex pairs into multi-cellular patterns in that region.
(3) In the outward flow mode, the effects of Coriolis generation terms in the $\overline{v w}$ equation on the level of turbulent kinetic energy are more visible in the entrance region due to the decrease in secondary flow intensity caused by the destructive addition of the Coriolis and the centrifugal forces.

References

Anderson, H.I. and Kristoffersen, R., 1995, "Turbulent Statistics of Rotating Channel Flow," Turbulent Shear Flow, Vol. 9, Springer, Berlin, pp. 53~70.
Bo, T., Iacovides, H. and Launder, B. E., 1995, "Developing Buoyancy-Modified Turbulent Flow in Ducts Rotating in Orthogonal Mode," Trans. ASME, J. of Turbomachinery, Vol. 117, pp. $65 \sim 95$.
Champagne, F. H., Sleicher, C. A. and Wehrmann, O. H., 1967, "Turbulence Measurements with Inclined Hot-Wire," J. Fluid Mech., Vol. 28, part 1, pp. 153~175.

Choi, Y. D., Shin, J. K., Chun, K. H. and Humphrey, J. A. C., 1997, "Modeling Turbulent Flow in a Curved Duct of Square Cross-Section," Proc. of $11^{\text {th }}$ Symposium on Turbulent Shear Flows, Grenoble, France, pp. 3.47~3.52.

Choi, Y. D., Moon, C. and Yang, S. H., 1990, " Measurement of Turbulent Flow Characteristics of Square Duct with a 180Degree Bend by Hot-Wire Anemometer," Proc. of the International Symposium on Turbulence Modeling and Experiments, Dubrovnik, pp. 429~438.

Jackson, T. W. and Lilly, D. G., 1983, "Single Wire Swirl Flow Turbulence Measurement," AIAA 83-1202, Cleveland, Ohio.
Janjua, S. I., Mclaug, D. K., Jackson, T. W. and Lilly, D. G., 1982, "Turbulence Measurements in a Confined Jet Using a Six-Orientation Hot-Wire Probe Technique," AIAA 82-1262, Cleveland, Ohio.
Johnston, J. P., Halleen, R. M. and Lezius, D. K., 1972, "Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow," J. Fhid Mech., Vol. 56. No. 3, pp. 533~557.

Kajishima, T., Miyake, Y. and Nishimoto, 1991, "Large Eddy Simulation of Turbulent Flow in a Square Duct," Trans. JSME (B), 57540, pp. 2530~2537.
Kim, J., 1983, "The Effect of Rotation on the Turbulent Structure," Proc. of $4^{\text {th }}$ International Symposium on Turbulent Shear Flows, Karlsruhe, pp. 6-14.

King, C. F., 1978, Ph.D. Thesis, Univ. College of Wales, Cardiff, Wales.

Kristofferson, R. and Andersson, H. I., 1993, "Direct Numerical Simulations of Low Reynolds Number Turbulent Flow in a Rotating Channel," J. Fluid Mech., Vol. 256, pp. 163~197.

Kristofferson, R., Nilsen, P. J. and Andersson, H. I., 1990, "Validation of Reynolds Stress Closures for Rotating Channel Flows by Means of Direct Numerical Simulations," Proc. International Symposium on Engineering Turbulence Modeling and Measurements, Dubrovinik, pp. 55~ 64.

Koyama, D. K. and Ohuchi, M., 1985, Proc. of 5th International Symposium of Turbulent Shear Flows, Cornell, pp. $2 \mathrm{I} \sim 19$.
Launder, B. E., Tselepidalsis, D. P. and Younis, B. A., 1987, "A Second-Moment Closure Study of Rotating Channel Flow," J. Fluid Mech., Vol. 183, pp. 63~75.
Launder, B. E. and Tselepidalsis, D. P., 1994, "Application of a New Second Moment Closure to Turbulent Channel Flow Rotating in Orthogonal Mode," International Journal of Heat and Fluid Flow, Vol. 15, No. 1, pp. 2~10.
Morris, W. D., 1981, "Heat Transfer and Fluid

Flow in Rotating Coolant Channels," Chic- inertial Frames of Reference," Fluid Dynamics hester: John Wiley and Sons.

Murata, A. and Mochizuki, S., 1999, "Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Smooth Duct," International J. of Heat and Mass Transfer, Vol. 42, pp. 3803~3814.

Pattersson, B. A. and Anderson, H. I., 1997, "Near-Watl Reynolds-Stress Modeling in Non-

Res., Vol. 19, pp. 251~276.

Tafti, D. K. and Vanka, S. P., 1991. "A Numerical Study of the Effect of Span-wise Rotation on Turbulent Cannel Flow," Phys. Fluids A, Vol. 3, No. 4, pp. 642~656.

Younis, B. A., 1993, "Prediction of Turbulent Flows in Rotating Rectangular Ducts," Trans. ASME, J. of Fluids Eng., Vol. 115, pp. 646~652.

[^0]: * Corresponding Author,

 E-mail : ydchoi@korea.ackr
 TEL: +82-2-3290-3325; FAX : +82-2-928-1067
 Professor, Department of Mechanical Engineering, Korea University, Sungpukku, Seoul 136-701, Korea. (Manuscript Received December 7, 2004; Revised April 6, 2005)

